Tel. 034-854888
Home
Products
Contact Us
Acetic Acid
ANTIOXIDANT 1010
Ascorbic Acid
Barium Stearate
Barium Sulphate
Blowing agent
Boric acid
Calcium Carbonate
Calcium Hydroxide
Calcium Hypochlorite
Calcium Lignosulphonate
Calcium Oxide
Calcium Stearate
Caprolactam
Carbon Black
Carbon Black Paste
Chlorinated Polyethylene
DBP
DEG
DINP
DOP
Ethylene Glycol
Ferric Chloride
Formalin
Formic Acid
Glycerine
Glyceryl Monostearate
Glycolic acid
Heat Stabilizer
Hydrazine
Hydrochloric acid
Hydrogen Peroxide
Isopropyl Alcohol
Limestone powder
Methyl Alcohol
Methylene Chloride
Moisture absorber
Nitric acid
NP-9
OB1 masterbatch
OBSH BLOWING AGANT
Oxalic acid
Oxidized polyethylene wax
PE wax
Phosphoric Acid
Pigment paste
Plasticizer
Polyacetal
Polyether Glycol
Polymer Anion
Polyvinyl Alcohol
Polyvinyl Chloride Resin
Processing aid
Propylene Glycol
Purging agent
Soda Ash
Sodium Bicarbonate
Sodium Carbonate
Sodium Hydroxide
Sodium Tripolyphosphate
Stearic acid
Sulphamic acid
Talcum
Tartaric acid
Titanium Dioxide
Titanium Dioxide Paste
Tribasic Leadsulphate
Trichloroethylene
Trisodium Phosphate
Zinc Oxide
Zinc Stearate
Citric acid
C6H8O7
CAS No.25213-24-5
PVA
POVAL
Na2SiO3
TRONOX CR834
Waterglass
Sodium Silicate
Sodium Metasilicate
Methylenedianiline
2-Hydroxyethylamine
Sodium Siligate
DDM
เมทิลีนไดอะนิลีน
MEA
เอทาโนลามีน
Carbon Black N660
Urea46
คาร์บอนแบล็ก N660
คาร์บอนแบล็ค N660
carbonyldiamine
diaminomethanone
เอ็นเอ็มพี
เอ็น-เมทิล-2-ไพโรลีโดน
เอ็น-เมทธิล-2-ไพโรลีโดน
เมธิลไพโรลิโดน
เมธิลไพร์โรลิโดน
เมทิลไพโรลิโดน
เมทิลไพร์โรลิโดน
เมทธิลไพโรลิโดน
เมทธิลไพร์โรลิโดน
นอร์มอลเมธิลไพโรริโดน
นอร์มอลเมทิลไพโรริโดน
นอร์มอลเมทธิลไพโรริโดน
NMP
N-Methyl-2-pyrrolidone
Methylpyrrolidone
C5H9NO , CAS number 872-50-4
หินเกล็ดคัดขนาด
BLR 699
SACTLEBEN RD3
Phosphoric acid
โพรไพลีนไกลคอล
Citric acid anhydrous
Malic acid
Xanthan Gum
Blancfixe
Precipitated Barium Sulfate
Ground Barium Sulfate
Synthetic Barium Sulfate
Precipitated Barium Sulphate
Ground Barium Sulphate
Synthetic Barium Sulphate
Baryte 350
Baryte 400 mesh
Baryte 800 mesh
Precipitated Baryte
Ground Baryte
Synthetic Baryte
Precipitated Barite
Ground Barite
Synthetic Barite
Xanthan Gum Europe
Xanthan Gum FCC
Xanthan Gum Food Grade
Xanthan Gum Jungbunzlauer
Xanthan Gum Pharmaceutical Grade
Xanthan Gum USP
แซนแทนกัม Jungbunzlauer
แซนแทนกัมเกรดยา
แซนแทนกัมเกรดอาหาร
แซนแทนกัมยุโรป
Calcium Hydroxide FCC
Calcium Hydroxide food grade
Calcium Hydroxide Pharma grade
Calcium Hydroxide Pharmaceutical Grade
Calcium Hydroxide USP grade
CaOH2 FCC
CaOH2 food grade
CaOH2 Pharma grade
CaOH2 Pharmaceutical Grade
CaOH2 USP grade
Hydrated Lime FCC
Hydrated Lime food grade
Hydrated Lime Pharma grade
Hydrated Lime Pharmaceutical Grade
Hydrated Lime USP grade
SCHAEFER Hydrated lime
SCHAEFER PRECAL
แคลเซียมคาร์บอเนตฟู้ดเกรด
แคลเซียมคาร์บอเนตฟูดส์เกรด
แคลเซียมฟู้ดเกรด
แคลเซียมฟูดส์เกรด
แคลเซียมไฮดรอกไซด์เกรดยา
แคลเซียมไฮดรอกไซด์เกรดอาหาร
แคลเซียมไฮดรอกไซด์ฟู้ดเกรด
แคลเซียมไฮดรอกไซด์ฟูดส์เกรด
ปูนขาว Food grade
ปูนขาว Pharmaceutical Grade
ปูนขาว PRECAL
ปูนขาว SCHAEFER
ปูนขาวเกรดยา
ปูนขาวเกรดอาหาร
ปูนขาวฟู้ดเกรด
ปูนขาวฟูดส์เกรด
ไฮเดรตไลม์เกรดยา
ไฮเดรตไลม์เกรดอาหาร
ไฮเดรตไลม์ฟู้ดเกรด
ไฮเดรตไลม์ฟูดส์เกรด
HEDP, เอชอีดีพี, Hydroxy ethylidene diphosphonic acid
Magnesium Stearate
พาราฟินแวกซ์ฟูลลี่รีไฟน์ , Paraffin Wax Fully Refined
แมกนีเซียมสเตียเรต
แมกนีเซียมสเตียเรท
Ammonium Chloride
Borax
Butyl CARBITOL
Butyl CELLOSOLVE
DEGME
Diethylene Glycol Monomethyl
EGBE
Ether
Ethylene Glycol Monobutyl Ether
NaCl
Sodium Chloride
กรดบอริค
เกลือกลาง
เกลือแก้ว
เกลือขาว
เกลือดำ
เกลือทะเล
เกลือเม็ด
เกลือสมุทร
โซเดียมคลอไรด์
ดีอีจีเอ็มอี
ไดเอทิลีนไกลคอลโมโนเมทิลอีเทอร์
บอริคแอซิด
บอแรกซ์
บิวทิลคาร์บิทอล
บิวทิลเซลโลโซล์ฟ
อีจีบีอี
เอทิลีนไกลคอลโมโนบิวทิลอีเทอร์
แอมโมเนียมคลอไรด์
HIMATEX,SNOBRITE,HIMAFIL,HIMAFINE
POLYGLYCOL P425,POLYGLYCOL P-425,CAS No. 25322-69-4
Polypropylene glycols,PPGs,Polypropylene Oxide
เกาลิน,เคโอลิน,Kaolin
เกาลินเคลย์,Kaolin clay
แคลไซน์เกาลิน,Calcine Kaolin
แคลไซน์เคลย์,Calcine Clay
ไชน่าเคลย์,China Clay
พีพีจี,PPG,โพลีโพรพิลีนไกลคอล
โพลีไกลคอล,Polyglycol,PPG425
โพลีโพรไพลีนไกลคอล,Polypropylene glycol
โพลีโพรไพลีนออกไซด์,โพลีโพรพิลีนออกไซ&#
อลูมิเนียมซิลิเกต,Aluminium Silicate
ไฮดรัสเคลย์,Hydrous Clay
ไฮดรัสอลูมิเนียมซิลิเกต,Hydrous Aluminium Silicate
4K Mica, ไมก้า4K
Alumina Silicate
KMPM Kaolin, เคเอ็มพีเอ็มเกาลิน
Mica
Muscovite Mica
Potassium Aluminium Silicate
Sericite, CAS No. 12001262
โพแทสเซียมอลูมิเนียมซิลิเกต
ไมก้า
อลูมินาซิลิเกต
Acetic acid ethyl ester
Acetic Ester, อะซีติกเอสเทอร์
C4H8O2, CAS No. 141786
Ethyl Acetate
Ethyl Ethanoate, เอทิลเอทาโนเอต
อะซีติกแอซิดเอทธิลเอสเตอร์
เอตทิลอะซิเตต
เอทธิลอะซีเตต
เอทธิลอะซีเตท
เอทธิลอะซีเทต
เอทิลอะซิเตท
เอทิลอะซีเตต
เอธิลอะซีเตต
Aliphatic Hydrocarbon Resin
C5 Resin, เรซิ่น C5, CAS No. 220543679
Hydrocarbon Resin
Petroleum Resin
Piperlene Resin, Piperylene Resin
Quintone Resin
Thermoplastic Resin
เทอร์โมพลาสติกเรซิ่น
ปิโตรเลียมเรซิ่น
ไฮโดรคาร์บอนเรซิ่น
ไดเอทิลีนไกลคอลโมโนบิวทิลอีเทอร์
ไดเมทิลฟอร์มาไมด์
พลาสติไซเซอร์ปลอดสารพทาเลต
เอทิลีนไวนิลอะซีเตต
โพลีเอทิลีนไกลคอล 4000
Calcium Nitrate
Cyclohexanone
Diacetone Alcohol
Butyl Diglycol
Butyl Acetate
Methyl Ethyl Ketone
Methyl Isobutyl Ketone
Magnesium Oxide
Acetone
EVA
Boraxpentahydrate, Boraxdecahydrate
Neobor Borax
PERC
Perchloroethylene
Tetrachloroethylene
Base oil
Deep Chrome Yellow
Nonylphenolethoxylate
Chlorine Solution
Sodium Hypochlorite
โนนิลฟีนอลอีทอกซีเลท
Magnesium Chloride
Glass Bead
Yellow pigment
Hydrogentperoxide
TPCC AEC
 

Nitric acid

ไนตริกแอซิด, กรดไนตริก, Nitric acid

กรดไนตริก หรือ กรดดินประสิว (อังกฤษ: Nitric acid) เป็นกรดที่มีอันตราย หากสัมผัสจะทำให้เกิดแผลไหม้ขั้นรุนแรง กรดไนตริกนี้ ค้นพบโดยการสังเคราะห์ โดย "Muslim alchemist Jabir ibn Hayyan" ประมาณ ค.ศ. 800 กรดไนตริกบริสุทธ์ 100% (ปราศจากน้ำ) จะเป็นของเหลวที่มีความหนาแน่น 1,552 กิโลกรัม/ลูกบาศก์เมตร และจะเป็นของแข็งที่อุณหภูมิ -42 °C ลูกบาศก์ โดยจะเป็นผลึกสีขาว และจะเดือดที่อุณหภูมิ 83 °C แต่ก็สามารถเดือดในที่ ที่มีแสงสว่าง ทั้ง ๆ ที่อยู่ในอุณหภูมิห้อง สารประกอบเคมีในกรดไนตริก (HNO3) , หรือ อควา ฟอร์ติส (aqua fortis) หรือ สปิริต ออฟ ไนเตอร์ (spirit of nitre) เป็นของเหลวที่กัดกร่อนและไม่มีสี เป็นกรดที่มีพิษที่สามารถทำให้เกิดแผลไฟไหม้อย่างรุนแรง สารละลายที่มีกรดไนตริกมากกว่า 86% เรียกว่า fuming nitric acidและสามารถกัดกร่อนโลหะมีตะกูลได้ ซึ่งสามารถแบ่งได้เป็น 2 ประเภท คือ ขาว (white fuming nitric acid) และแดง (red fuming nitric acid)

กรดไนตริก (HNO3), หรือที่ชาวบ้านทั่วไปเรียกว่ากรดดินประสิว เป็นกรดที่มีอันตรายมาก หากสัมผัสจะทำให้เกิดแผลไหม้ขั้นรุนแรง กรดไนตริกนี้ ค้นพบโดยการสังเคราะห์ โดย Muslim alchemist Jabir ibn Hayyan.ประมาณ ค.ศ.800 กรดบริสุทธิ์ จะใส ไร้สี หากเก็บไว้นานจะมีสีเหลือง เนื่องจากมีส่วนประกอบของ ออกไซโของไนโตรเจน หากกรดมีความเข้มข้นสูงเกินกว่า 86% จะมีไอระเหยของกรดขึ้นมา ไอของกรดที่ระเหยออกมาจะเป็นมีขาว หรืออาจเป็นสีแดงขึ้นอยู่กับความเข้มข้นของไนโตรเจนไดออกไซด์ที่เกิดขึ้น

คุณสมบัติ

กรดไนตริกบริสุทธ์ 100% (ปราศจากน้ำ) จะเป็นของเหลวที่มีความหนาแน่น 1,552 กิโลกรัม/ลูกบาศก์เมตร และจะเป็นของแข็งที่อุณหภูมิ -42 °C ลูกบาศก์ โดยจะเป็นผลึกสีขาว และจะเดือดที่อุณหภูมิ 83 °C แต่ก็สามารถเดือดในที่ ที่มีแสงสว่าง ทั้ง ๆ ที่อยู่ในอุณหภูมิห้อง จะมีการสลายตัวในรูปแบบไนโตรเจนไดออกไซด์ ตามปฏิกิริยา ดังนี้

4HNO3 2H2O + 4NO2 + O2 (72°C)

นั่นหมายความว่า กรดไนตริกบริสุทธิ์ที่ปราศจากน้ำเจือปน ความเก็บไว้ที่อุณหภูมิต่ำกว่า 0 °C เพื่อป้องกันการสลายตัว ไนโตรเจนไดออกไซด์ (NO2) ที่ละลายกลับเข้าไปที่กรดไนตริกจะมีสีเหลือง หรือเป็นสีแดงที่อุณหภูมิสูง ในขณะที่กรดไนตริกบริสุทธิ์ จะให้ไอสีขาวแพร่กระจายในอากาศ ส่วนกรดที่มีไนโตรเจนไดออกไซด์ละลายอยู่จะให้ไอสีแดงอมน้ำตาล

กรดไนตริกสามารถละลายในน้ำได้ทุกอัตราส่วน  ที่ความเข้มข้น 68% HNO3 จะเป็นสารละลายอะซีโอโพรพ (ของเหลวผสมที่มีจุดเดือดสูงสุดและต่ำสุดที่ สามารถกลั่นออกโดยไม่มีการสลายตัวและเป็นสัดส่วนที่แน่นอน เช่น ไอโซโพรพิลแอลกอฮอล์กับน้ำ) ซึ่งที่ความเข้มข้น 68% นี้ กรดจะเดือดที่อุณหภูมิ 120.5 °C (ที่ความกดดันชั้นบรรยากาศ 1 atm) กรดสามารถอยู่ในรูปของแข็งไฮเดรต (สารประกอบที่มีโมเลกุลของน้ำอยู่ด้วย) ได้สองรูปแบบคือ โมโนไฮเดรต (monohydrate [HNO3·H2O]) และ ไตรไฮเดรต (trihydrate [HNO3·3H2O])

ไนโตรเจนออกไซด์ (NOx) สามารถละลายในกรดไนตริกได้  ซึ่งจะละลายได้มากน้อยเพียงได้ขึ้นอยู่กับ ความเข้มข้นของออกไซด์  รวมถึงความดันไอที่อยู่เหนือของเหลว อุณหภูมิ ซึ่งจะแสดงออกเป็นสีต่าง ๆ กันตามที่ได้กล่าวมาแล้ว

คุณสมบัติทางกรด

เช่นเดียวกับกรดทั่วไป กรดไนตริกเมื่อทำปฏิกิริยากับด่าง ออกไซด์พื้นฐาน และคาร์โบเนตท์ ให้สารประกอบในรูปของเกลือ  ตัวอย่างเช่น แอมโมเนียมไนเตรด ด้วยธรรมชาติของการออกซิเดชั่น กรดไนตริกจะไม่ยอมปล่อยโปรตอนของมัน นั่นคือไม่ปล่อยอะตอมของไฮโดรเจนออกไป) เมื่อทำปฏิกิริยากับโลหะและได้เกลือซึ่งจะมีสถานะออกซิไดซ์ที่สูงขึ้น จึงทำให้มีการกัดกร่อนที่รุนแรงกับโลหะ และควรใช้งานอย่างระมัดระวังเมื่อทำงานใกล้โลหะหรืออัลลอยส์ กรดไนตริกมี ค่าคงที่สมดุลของการแตกตัวของเบสอ่อน (acid dissociation constant [pKa]) 1.4 เมื่อละลายในน้ำที่ 93% ที่ 0.1 โมลต่อลิตร จะมีการแตกตัวของไอออนเป็น ไนเตรดไอออน [NO3-] และไนเตรตโปรตอน ซึ่งรู้จักในชื่อ ไฮโดรเนียมไอออน

H3O+.HNO3 + H2O H3O+ + NO3-

ปฏิกิริยากับโลหะ

กรดไนตริกมีสามารถสูงในการทำออกซิไดซ์สูงมาก สามารถทำปฏิกิริยากับสารอินทรีย์หลายชนิด ปฏิกิริยารุนแรงจนสามารถระเบิดได้ ทั้งนี้ขึ้นอยู่กับความเข้มข้นของกรด อุณหภูมิ  และตัวลดออกซิเจน(ในปฏิกิริยาที่มีออกซิเจนเกี่ยวข้อง) ที่เกี่ยวข้อง ผลของปฏิกิริยาที่ได้มีหลากหลาย  ปฏิกิริยาสามารถเกิดขึ้นได้กับโลหะแทบทุกชนิด ยกเว้นตระกูลโลหะมีค่า (ทองคำ,เงิน,เพลตตินั่ม,พลาลาเดียม,รูธีเนี่ยม,โรเดี่ยม,ออสเมี่ยม,อิริเดี่ยม) และโลหะผสมบางชนิด (อัลลอย)  ปฏิกิริยารีแอคชั่นที่เกิดขึ้นกับกรดเข้มข้นจะมีก๊าซไนโตรเจนไดออกไซด์ขึ้น

(NO2).Cu + 4HNO3 Cu(NO3)2 + 2NO2 + 2H2O

คุณสมบัติทางกรด เมื่อเป็นกรดเจือจาง เมื่อทำปฏิกิริยา จะเกิดก๊าซไนโตรเจนออกไซด์เกิดขึ้น

(NO).3Cu + 8HNO3 3Cu(NO3)2 + 2NO + 4H2O

เมื่อกรดไนตริกทำตัวเป็นตัวเร่งปฏิกิริยาออกซิไดซิ่ง จะเกิดก๊าซไฮโดรเจนขึ้น ,เมื่อใช้กรดไนตริกเจือจาง ทำปฏิกิริยากับ แมกนีเซียม(Mg) หรือ แมงกานีส(Mn) หรือ แคลเซียม (Ca) โดยทำปฏิกิริยาที่อุณหภูมิต่ำ (เย็น) จะใช้ก๊าซไฮโดรเจน

Mg(s) + 2HNO3 (aq)   Mg(NO3)2 (aq) + H2 (g)

การสร้างฟิล์มป้องกัน (Passivation)

โครเมี่ยม ,เหล็ก และ อลูมิเนี่ยม สามารถละลายได้อย่างรวดเร็ว โดยกรดไนตริกเจือจาง , กรดเข้มข้นจะสร้างโลหะออกไซด์ ซึ่งจะป้องกันโลหะจากการเกิดออกซิเดชั่นในอนาคต กระบวนการนี้เรียกว่าการสร้างฟิล์มป้องกัน (Passivation)

ปฏิกิริยากับอโลหะ

ปฏิกิริยากับอโลหะ ยังเว้นกับซิลิคอนและกลุ่มฮาโลเจน โดยปกติจะเกิดปฏิกิริยารุนแรงซึ่งจะให้ก๊าซ ไนโตรเจนไดออกไซด์เมื่อใช้กรดเข้มข้น และก๊าวไนโตรเจนออกไซด์เมื่อใช้กรดเจือจาง

C + 4HNO3 CO2 + 4NO2 + 2H2O หรือ 3C + 4HNO3 3CO2 + 4NO + 2H2O

ไอกรดไนตริกสีขาว เราเรียกว่า 100% กรดไนตริกหรือ WFNA(White fuming nitric acid) ใกล้เคียงกับ แอลไฮดัสซ์ไนตริก (กรดไนตริกที่ไม่มีส่วนผสมของน้ำอยู่เลย) ไอกรดไนตริกสีขาวมีส่วนประกอบของน้ำไม่เกิน 2% และก๊าซไนโตรเจนไดออกไซด์(NO2) ไม่เกิน 0.5% ไอกรดไนตริกสีแดง หรือ RFNA (Red fuming nitric acid), ประกอบไปด้วยก๊าซไนโตรเจนไดออกไซด์(NO2) จำนวนหนาแน่นมาก โดยมีส่วนประกอบของก๊าซไนโตรเจนไดออกไซด์(NO2) ไม่เกิน17% และอีกสูตรหนึ่งมีส่วนประกอบของก๊าซไนโตรเจนไดออกไซด์(NO2) ไม่เกิน 13% เราสามารถยับยั้งการเกิดไอกรดไนตริก (ทั้ง IWFNA และ IRFNA) โดยการเติม ไฮโดรเจนฟลูออไรด์ (HF) 0.6 to 0.7% ลงในกรดไนตริก ฟลูออไรด์ที่ใส่เพื่อเพิ่มการป้องกันการกัดกร่อนของถังโลหะ (ฟลูออไรด์จะสร้าง ชั้นเมทัลฟลูออไรด์เคลือบผิวป้องกันโลหะ

การใช้งานในเชิงอุตสาหกรรม

กรดไนตริกสร้างขึ้นโดยการผสมก๊าซไนโตรเจนไดออกไซด์กับน้ำ ในบรรยากาศที่เต็มไปด้วยออกซิเจน จะเกิดปฏิกิริยารีแอคชั่น ออกซิไดซ์ เป็นกรดไนตรัส (HNO2) และกรดไนตริก (HNO3) ดังสมการ

2NO2 + H2O HNO2 + HNO3

2.ไนโตรเจนไดออกไซด์ + น้ำ กรดไนตรัส+กรดไนตริก

กรดไนตรัสสามารถสลายตัวเป็นดังนี้

3HNO2   HNO3 + 2NO + H2O

3.กรดไนตรัส   กรดไนตริก+ ไนตริกออกไซด์ + น้ำ)

ไนตริกออกไซด์ จะออกซิไดซ์กับไนโตรเจนไดออกไซด์  และทำปฏิกิริยากับน้ำอีกครั้ง กลายเป็นกรดไนตริก:

4NO + 3O2 + 2H2O 4HNO3

(nitric oxide + oxygen + water nitric acid).

กรดไนตริกเจือจางสามารถทำให้เข้มข้นได้โดยการกลั่นจนมีความเข้มข้นกรดที่ 68% ณ จุดนี้ ส่วนผสมอะซีโอโทรปิค (ของเหลวผสมที่มีจุดเดือดสูงสุดและต่ำสุดที่ สามารถกลั่นออกโดยไม่มีการสลายตัวและเป็นสัดส่วนที่แน่นอน)ประกอบด้วยน้ำ 32% การทำให้เข้มข้นมากกว่านี้ต้องอาศัยการกลั่นกับกรดซัลฟูริก ซึ่งทำหน้าที่เป็นสารดักจับน้ำ (dehydrating agent) ในห้องปฏิบัติการจะกลั่นโดยใช้วัสดุที่เป็นแก้วทั้งหมด และลดแรงดันเพื่อป้องกันการสลายตัวของกรด ในการใช้งานในเชิงพาณิชย์ จะใช้สารละลายกรดที่มีความเข้มข้นของกรดไนตริกระหว่าง 52% ถึง 68% การผลิตในเชิงพาณิชย์ใช้ขบวนการที่เรียกว่า Ostwald ตามชื่อของ Wilhelm Ostwald. กรดยังสามารถสังเคราะห์ได้โดยการออกซิไดซ์แอมโมเนีย ผลผลิตที่ได้จะถูกเจือจางโดยน้ำและเป็นส่วนหนึ่งของปฏิกิริยาเคมี อย่างไรก็ตามวิธีการนี้สำคัญในการผลิต แอมโมเนียมไนเตรด จากสารตั้งต้นแอมโมเนียโดยวิธีการของ Haber เพราะว่าผลิตผลสุดท้ายสามารถสร้างก๊าซไนโตรเจน ก๊าซไฮโดรเจน และออกซิเจน สำหรับจัดจำหน่าย

การสังเคราะห์ในห้องปฏิบัติการ

ในห้องปฏิบัติการ กรดไนตริกสามารถสร้างได้จาก คอปเปอร์ไอออนทูไนเตรด (copper(II) nitrate) หรือการเกิดปฏิกิริยาเคมีระหว่าง โปแตสเซียมไนเตรด(KNO3) กับ กรดซัลฟูริกความเข้มข้น 96% (H2SO4) (โดยทั้งสองมีน้ำหนักเท่า ๆ กัน) และกลั่นที่อุณหภูมิ 83 °C ซึ่งเป็นจุดเดือดของกรดไนตริก จนกระทั่งเหลือแต่ผลึกสีขาวของโปรแตสเซียมไฮโดรเจนซัลเฟต(KHSO4), ไอของกรดไนตริกสีแดงที่ได้มาอาจเปลี่ยนเป้นไอสีขาวของกรดไนตริก

H2SO4 + KNO3 KHSO4 + HNO3

ก๊าซ NOx สามารถกำจัดได้โดยการลดความดันลงที่อุณหภูมิห้อง (10-30 นาที ที่ 200 มิลลิเมตรปรอท หรือ 27 กิโลปาสคาล) จะให้ไอกรดไนตริกสีขาว โดยขบวนการนี้สามารถทำได้ทั้งลดความดันและอุณหภูมิในคราวเดียวกัน

กรดไนตริกในห้องปฏิบัติการ IWFNA ถูกใช้เป็นตัวเร่งปฏิกิริยาออกซิไดซ์ในเชื้อเพลิงเหลวของจรวด IRFNA เป็น 1 ใน 3 ขององค์ประกอบของเชื้อเพลิงเหลว สำหรับจรวดทำลาย BOMARC สารละลายผสมระหว่างกรดไนตริกกับแอลกอฮอลล์ (Nital) ถูกใช้ในขบวนการกัดผิวโลหะกำจัดรอยขีด (reveal the microstructure) ในเชิงพาณิชย์มีการใช้ส่วนผสมน้ำกับกรดไนตริกความเข้มข้น 5-30% และกรดฟอสฟอริค 15-40% เพื่อใช้เป็นน้ำยาทำความสะอาดเครื่องใช้ในครัวเรือน โดยสามารถกำจัดคราบของแคลเซียมและแมกนีเซียม หรือตะกรันที่เกิดจากการใช้น้ำกระด้าง กรดไนตริกยังถูกใช้ในขบวนการทำระเบิกที่มีไนเตรดเป็นองค์ประกอบเช่น ไนโตรกลีเซอรีน, ไตรไนโตรโทลูอีน(TNT) และ ไซโครไตรมีทีลีนไตรไนทรามีน(RDX) และแน่นอนว่าปุ๋ยอย่างแอมโมเนียมไนเตรด

งานไม้

ในความเข้มข้นต่ำ(ประมาณ 10%), กรดไนตริกใช้ในการทำให้ไม้สน หรือไม้เมเปิลดูเก่า โดยสีจะเปลี่ยนเป็นสีเทา-ทอง คล้าย ๆ กับขี้ผึ้งเก่า  และดูเป็นไม้เก่า

ใช้งานอื่น ๆ กรดไนตตริกยังใช้ในการแยกโลหะออกจากแร่ เพราะว่าคุณสมบัติในการทำปฏิกิริยากับโลหะแทบทุกชนิด เมื่อใช้ผสมร่วมกันกับกรดไฮโดรคลอลิค  จะเป็นสารละลายกรดที่เรียกว่า Aqua Regia หรือ Royal Water ที่สามารถละลายทองคำ และแพทตินั่มได้

ความปลอดภัย กรดไนตริกมีความสามารถในการออกซิไดซ์สูงมาก ปฏิกิริยาของกรดไนตริกกับสารประกอบเช่นไซยาไนด์, คาร์ไบด์และผงโลหะสามารถระเบิดได้ ปฏิกิริยาของกรดไนตริกกับสารประกอบสารอินทรีย์เช่น เทอร์เพนทีน (เป็นของเหลว ที่ได้จากการกลั่นเรซิ่นที่ได้จากต้นไม้ เช่นต้นสน ) ซึ่งสามารถระเบิดรุนแรงและสามารถจุดระเบิดตัวเองได้(self-igniting). กรดไนตริกเข้มข้นสามารถกัดผิวหนังของมนุษย์ เป็นสีเหลืองเนื่องจากทำปฏิกิริยากับเจลราติน จุดคราบสีเหลืองจะเปลี่ยนสีส้มเมื่อถูกทำให้มีสภาพเป็นกลาง

กรดไนตริก เหมาะสำหรับงานชุบโลหะ งานล้างคราบไขมันที่ติดบนโลหะ งานทำความสะอาด และอื่นๆ

Nitric acid (HNO3), also known as aqua fortis and spirit of niter, is a highly corrosive strong mineral acid. The pure compound is colorless, but older samples tend to acquire a yellow cast due to decomposition into oxides of nitrogen and water. Most commercially available nitric acid has a concentration of 68%. When the solution contains more than 86% HNO3, it is referred to as fuming nitric acid. Depending on the amount of nitrogen dioxide present, fuming nitric acid is further characterized as white fuming nitric acid or red fuming nitric acid, at concentrations above 95%. Nitric acid is the primary reagent used for nitration - the addition of a nitro group, typically to an organic molecule. While some resulting nitro compounds are shock- and thermally-sensitive explosives, a few are stable enough to be used in munitions and demolition, while others are still more stable and used as pigments in inks and dyes. Nitric acid is also commonly used as a strong oxidizing agent.

Physical and chemical properties

Commercially available nitric acid is an azeotrope with water at a concentration of 68% HNO3, which is the ordinary concentrated nitric acid of commerce. This solution has a boiling temperature of 120.5 °C at 1 atm. Two solid hydrates are known; the monohydrate (HNO3·H2O) and the trihydrate (HNO3·3H2O). Nitric acid 70% Nitric acid of commercial interest usually consists of the maximum boiling azeotrope of nitric acid and water, which is approximately 68% HNO3, (approx. 15 molar). This is considered concentrated or technical grade, while reagent grades are specified at 70% HNO3. The density of concentrated nitric acid is 1.42 g/mL. An older density scale is occasionally seen, with concentrated nitric acid specified as 42° Baumé.

The main use of nitric acid is for the production of fertilizers. Nitric acid is neutralized with ammonia to give ammonium nitrate. This application consumes 75–80% of the 26M tons produced annually (1987). The other main applications are for the production of explosives, nylon precursors, and specialty organic compounds.

Precursor to organic nitrogen compounds. In organic synthesis, industrial and otherwise, the nitro group is a versatile functionality. Most derivatives of aniline are prepared via nitration of aromatic compounds followed by reduction. Nitrations entail combining nitric and sulfuric acids to generate the nitronium ion, which electrophilically reacts with aromatic compounds such as benzene. Many explosives, e.g. TNT, are prepared in this way. See also: nitration. The precursor to nylon, adipic acid, is produced on a large scale by oxidation of cyclohexanone and cyclohexanol with nitric acid.

Rocket propellant

Nitric acid has been used in various forms as the oxidizer in liquid-fueled rockets. These forms include red fuming nitric acid, white fuming nitric acid, mixtures with sulfuric acid, and these forms with HF inhibitor. IRFNA (inhibited red fuming nitric acid) was one of 3 liquid fuel components for the BOMARC missile.

Niche uses

Analytical reagent

In elemental analysis by ICP-MS, ICP-AES, GFAA, and Flame AA, dilute nitric acid (0.5 to 5.0%) is used as a matrix compound for determining metal traces in solutions. Ultrapure trace metal grade acid is required for such determination, because small amounts of metal ions could affect the result of the analysis.

It is also typically used in the digestion process of turbid water samples, sludge samples, solid samples as well as other types of unique samples which require elemental analysis via ICP-MS, ICP-OES, ICP-AES, GFAA and flame atomic absorption spectroscopy. Typically these digestions use a 50% solution of the purchased HNO 3 mixed with Type 1 DI Water. In electrochemistry, nitric acid is used as a chemical doping agent for organic semiconductors, and in purification processes for raw carbon nanotubes.

Woodworking

In a low concentration (approximately 10%), nitric acid is often used to artificially age pine and maple. The color produced is a grey-gold very much like very old wax or oil finished wood (wood finishing).

Etchant and cleaning agent

The corrosive effects of nitric acid are exploited for a number of specialty applications, such as pickling stainless steel. A solution of nitric acid, water and alcohol, Nital, is used for etching of metals to reveal the microstructure. ISO 14104 is one of the standards detailing this well known procedure. Commercially available aqueous blends of 5–30% nitric acid and 15–40% phosphoric acid are commonly used for cleaning food and dairy equipment primarily to remove precipitated calcium and magnesium compounds (either deposited from the process stream or resulting from the use of hard water during production and cleaning). The phosphoric acid content helps to passivate ferrous alloys against corrosion by the dilute nitric acid.

Nitric acid can be used as a spot test for alkaloids like LSD, giving a variety of colours depending on the alkaloid.

Safety

Nitric acid is a strong acid and a powerful oxidizing agent. The major hazard posed by it is chemical burns as it carries out acid hydrolysis with proteins (amide) and fats (ester) which consequently decomposes living tissue (e.g. skin and flesh). Concentrated nitric acid stains human skin yellow due to its reaction with the keratin. These yellow stains turn orange when neutralized. Systemic effects are unlikely, however, and the substance is not considered a carcinogen or mutagen. The standard first aid treatment for acid spills on the skin is, as for other corrosive agents, irrigation with large quantities of water. Washing is continued for at least ten to fifteen minutes to cool the tissue surrounding the acid burn and to prevent secondary damage. Contaminated clothing is removed immediately and the underlying skin washed thoroughly. Being a strong oxidizing agent, reactions of nitric acid with compounds such as cyanides, carbides, metallic powders can be explosive and those with many organic compounds, such as turpentine, are violent and hypergolic (i.e. self-igniting). Hence, it should be stored away from bases and organics.

History, The first mention of nitric acid is in Pseudo-Geber's De Inventione Veritatis, wherein it is obtained by calcining a mixture of niter, alum and blue vitriol. It was again described by Albert the Great in the 13th century and by Ramon Lull, who prepared it by heating niter and clay and called it "eau forte" (aqua fortis). Glauber devised the process still used today to obtain it, namely by heating niter with strong sulfuric acid. In 1776 Lavoisier showed that it contained oxygen, and in 1785 Henry Cavendish determined its precise composition and showed that it could be synthesized by passing a stream of electric sparks through moist air

nitric acid, (HNO3), colourless, fuming, and highly corrosive liquid (freezing point -42° C [-44° F], boiling point 83° C [181° F]) that is a common laboratory reagent and an important industrial chemical for the manufacture of fertilizers and explosives. It is toxic and can cause severe burns. nitric acid, chemical compound, HNO3, colorless, highly corrosive, poisonous liquid that gives off choking red or yellow fumes in moist air. It is miscible with water in all proportions. It forms an azeotrope (constant-boiling mixture) that has the composition 68% nitric acid and 32% water and that boils at 120.5°C. The nitric acid of commerce is typically a solution of 52% to 68% nitric acid in water. Solutions containing over 86% nitric acid are commonly called fuming nitric acid. White fuming nitric acid (WFNA) is similar to the anhydrous variety, and red fuming nitric acid (RFNA) has a reddish brown color from dissolved nitrogen oxides. When treated with hydrogen fluoride, both varieties form inhibited fuming nitric acid, which has increased corrosion resistance in metal tanks, e.g., when used as an oxidizer in liquid fuel rockets.

Nitric acid is a strong oxidizing agent. It ionizes readily in solution, forming a good conductor of electricity. It reacts with metals, oxides, and hydroxides, forming nitrate salts. Chief uses of nitric acid are in the preparation of fertilizers, e.g., ammonium nitrate, and explosives, e.g., nitroglycerin and trinitrotoluene (TNT). It is also used in the manufacture of chemicals, e.g., in making dyes, and in metallurgy, ore flotation, etching steel, photoengraving, and reprocessing of spent nuclear fuel. It is produced chiefly by oxidation of ammonia (the Ostwald process). Small amounts are produced by the treatment of sodium nitrate with sulfuric acid. Nitric acid was known to the alchemists as aqua fortis; the name is used in commerce for impure grades of it. Aqua regia is a mixture of nitric and hydrochloric acids. Niric acid is a component of acid rain.

สอบถามข้อมูลเพิ่มเติมได้ที่ ฝ่ายขาย

Thai Poly Chemicals Co., Ltd.

บริษัท ไทยโพลีเคมิคอล จำกัด

ที่อยู่36/5 ม.9  แขวง/ตำบลนาดี  เขต/อำเภอเมืองสมุทรสาคร  จังหวัดสมุทรสาคร รหัสไปรษณีย์74000

Tel.: 034854888, 034496284

Fax.: 034854899, 034496285

Mobile: 0824504888, 0800160016

Website : www.thaipolychemicals.com

Email1 : thaipolychemicals@hotmail.com

Email2 : info@thaipolychemicals.com

 

 


This website was created for free with Own-Free-Website.com. Would you also like to have your own website?
Sign up for free